REV.	DESCRIPTION	ER NUMBER	DATE	APPROVAL
1.4	REVISED PER ER	ER-49816	$08 / 02 / 23$	A.LETSO
1.3	REVISED PER ER	ER-48668	$09 / 02 / 20$	A.LETSO
1.2	REVISED PER ER	ER-48253	$08 / 02 / 19$	A.LETSO

Table of Contents

Section Page
1.0 SCOPE 6
1.1 General Description 6
1.2 Use OF Shall, Should, May and Will 6
2.0 APPLICABLE DOCUMENTS7
2.1 General 8
2.2 Staco Systems Documents 8
2.3 Government Documents 8
2.4 Order of Precedence 8
3.0 THE SERIES 100 PRODUCT LINE 10
3.1 Pushbutton and Switch Characteristics 10
3.2 Standard 'Coded' Configurations 14
3.3 Customized Configurations 17
3.4 Matrix Frame Assemblies 17
3.5 Accessories 19
4.0 GENERAL SPECIFICATIONS 20
4.1 Enclosure Designs 22
4.2 Outline Dimensions 26
4.3 Display Specifications 44
4.4 Mechanical Specifications 48
4.5 Electrical Specifications 52
4.6 Optical Performance 66
4.7 Environmental Specifications 75
4.8 Material Requirements 77
4.9 Other Requirements 77
5.0 ORDER INFORMATION 82
5.1 Accessories and Part Number 86
6.0 TECHNICAL BULLETINS 97
Figures
Figure
Page
Figure 1: Model C - exploded view - Drip-proof and PC termination version shown 14
Figure 2: Model A - exploded view - Drip-proof and PC termination version 15
Figure 3: Model 92 "coded" - Incandescent version shown 15
Figure 4: Model 92 "coded" - LED version shown 16
Figure 5: S100 exploded view (solder termination version shown) 23
Figure 6: S100 exploded view (PCB termination version shown) 24
Figure 7: S 100 exploded view (Crimp termination version shown) 25
Figure 8: Splash-proof/Watertight details 26
Figure 9: Drip-Proof - Solder/PCB and Crimp switches - Enclosure Type II solder and PCBtermination and Enclosure Type V crimp termination (front view).. 29
Figure 10: Drip-Proof - Solder/PCB switches - Enclosure Type II solder and PCB termination (top
view) 30
Figure 11: Drip-Proof - Solder/PCB switches - Enclosure Type II solder and PCB termination (sideview) 30
Figure 12: Drip-proof-proof switches - Enclosure Type V crimp pin termination (top view) 31
Figure 13: Drip-proof switches - Enclosure Type V crimp pin termination (side view) 31
Figure 14: Splash-Proof/ Watertight switches - Enclosure Type Ill solder and PCB terminations and Enclosure Type VI crimp termination (front view) 32
Figure 15: Splash-Proof/Watertight switches - Enclosure Type III solder and PCB terminations (topview) 32Figure 16: Splash-Proof/Watertight switches - Enclosure Type Ill solder and PCB terminations (sideview) 33
Figure 17: Splash-Proof/Watertight switches - Enclosure Type VI crimp termination (front view) 33
Figure 18: Splash-Proof/Watertight switches - Enclosure Type VI crimp termination (top view) 34
Figure 19: Solder termination 34
Figure 20: PC termination 34
Figure 21: Crimp termination 35
Figure 22: Crimp pin 35
Figure 23: Crimp Receptacle Detail 36
Figure 24: Hardware (splash-proof and watertight) 36
Figure 25: Hardware (drip-proof, types II and V). 37
Figure 26: Hardware (splash-proof/watertight, types III and VI) 37
Figure 27: Pushbutton Assembly types (Incandescent/LED) 39
Figure 28: Panel cutout and thickness 40
Figure 29: Matrix mount for type II \& VI 41
Figure 30: Matrix mount for type III \& VI 42
Figure 31: Slot mount for type I \& III 43
Figure 32: Switch guards (P/N 15089 \& 156103) type II, V 43
Figure 33: Switch guard (P/N 15204) type III, VI 43
Figure 34: Switch guard (P/N 156104) type III, VI. 44
Figure 35: Legend Area 44
Figure 36: Standard font size and style 46
Figure 37: Character height 46
Figure 38: Pushbutton displacement for splash-proof switches 51
Figure 39: Mounting Provision (solder termination shown) 51
Figure 40: Switch terminal identification 53
Figure 41: Pushbutton LED Polarity 64
Figure 42: Incandesent Color - CIE 1931 Chromaticity Diagram 68
Figure 43: High Brightness LED Colors - CIE 1931 Chromaticity Diagram 69
Figure 44: Voltage Dimming Curve 71
Figure 45: NVIS Compatible Colors - CIE 1976 Chromaticity Diagram 72
Figure 49: Part Number Model. 82
Figure 51: Panel Seal 86
Figure 52: Standard Pushbutton Guard for Drip-proof Sealed Assemblies 87
Figure 53: Pushbutton Guard for Watertight Sealed Assembly 88
Figure 54: Color Filter Caps 89
Figure 55: Pushbutton Retainer Tie 90
Figure 57: Pushbutton Extraction Tool 91

SIZE	CAGE CODE	DWG NO
A	12522	
sCale NONE	WT	SHEET

Figure 59: Crimping Pin Tools and Positioner .. 93
Figure 56: Wire Connector Insertion and Removal Tool .. 93
Figure 60: Insulator Plug.. 94
Figure 61: Light Source Assemblies... 95

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { cage coob } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEEI	SHEET 4 OF 97	

Tables

Table Page
Table I: Switch and Pushbutton BOM 17
Table II: Enclosure Designs 22
Table III: Outline Dimensions 26
Table IV: Mounting hardware dimension 36
Table V: Mounting panel thickness maximum 38
Table VI: Viewing Area 44
Table VII: Recommended Line and Character per Display Area 47
Table VIII: Action Characteristic 50
Table IX: Actuation and Pushbutton Travel 50
Table X: Pushbutton switch weight 52
Table XI: Switch and termination diagram 53
Table XII: Bussing Circuit Diagram 54
Table XIII: Common Circuit diagrams 56
Table XIV: 5 VDC High Bright LED Circuit Diagram 58
Table XV: 28 VDC High Bright LED Circuit Diagram 60
Table XVI: 28 VDC High Bright LED Circuit Diagram (Voltage Dimming) 62
Table XVII: Contact Rating 64
Table XVIII: LED Current Performance 65
Table XIX: Incandescent Lamp Option 65
Table XX: Incandescent Luminance Performance (Non-NVIS) 66
Table XXI: HB-LED Luminance performance (Non-NVIS) 68
Table XXII: Color Limits (Non-NVIS) 70
Table XXIII: Chromaticity Requirements of NVIS Compatible Light Sources 73
Table XLVI: NVIS Illuminated Color 74
Table XLVII: Type 6 Contrast 75
Table XLVIII: Operating Temperature Range 76
Table L: Switches/Indicator Configuration Table 83
Table XXIV: Incandescent Pushbutton Configuration Table 84
Table XXV: High Brightness LED Pushbutton Configuration Table 85
Table XXVI: Color Filter Caps 89
Table LVIII: Crimp Pin and Positioner P/N's 92
Table XXVII: 5 Volt Light Source Assembly Part Numbers 95
Table XXVIII: 28 Volt Light Source Assembly Part Numbers 96
Table XXIX: 28 Volt with Voltage Dimming Light Source Assembly Part Numbers 96

1.0 SCOPE

1.1 General Description

The Staco Systems Series 100 is a complete product line of lighted pushbutton switches, and indicators.

This Specification Control Document (SCD) covers the requirements for the Series 100 switch assemblies, pushbutton assemblies, pushbutton switch assemblies, and companion products (which are covered by their own specification control drawings).
This product line meets the general requirements of MIL-PRF-22885, and, in matrix form, MIL-S-24317.

The High Brightness LED and Incandescent lamp light source configurations are built in accordance with the applicable requirements of MIL-PRF-22885. Both versions are built in accordance with the applicable requirements of MIL-L-85762, and MIL-STD-3009.
1.2 Use OF Shall, Should, May and Will

In this SCD, "shall" is used to express a provision that is binding; "should" and "may" are used to express a non-mandatory provision; and "will" is used to express a declaration of intent.

This page intentionally left blank

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sILE }} \mathrm{A}$	$\begin{gathered} \text { Cage coog } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {Rev }}{ }^{\text {a }}$. 4
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Shet	SHEET 7 OF 97	

2.0 APPLICABLE DOCUMENTS

2.1 General

The following documents form a part of this document to the extent specified herein. Where specific paragraphs are called out, all subordinate paragraphs also apply. Where individual paragraphs are not specified, the document is applicable in its entirety.

2.2 Staco Systems Documents

SCD Series 100.

2.3 Government Documents

2.3.1 Military Specifications

MIL-PRF-22885 General specifications for switches and illuminated push button.
MIL-S-24317 General Specification for Switches, Multi-station, Pushbutton.
MIL-DTL-5541
MIL-A-8625 Anodic Coatings for Aluminum Alloys.
MIL-P-13949 Plastic Sheet, Laminated, Metal Clad for Printed Wiring Boards.
MIL-R-25988 Oil and Fuel Resistant for Rubber, Fluorosilicone Elastomer.
MIL-P-27418 Soft Nickel Plating (Electrodeposited, Sulfamate Bath).
MIL-G-45204 Gold Plating, Electrodeposited.
MIL-I-45208 Inspection Systems Requirements.
MIL-S-901
Requirements for Shock Tests, High Impact Shipboard Machinery, Equipment, ad Systems.

2.3.2 Military Standards

MIL-STD-130
MIL-STD-202
MIL-STD-108

MIL-STD-454
MIL-STD-883
MIL-STD-889
MIL-STD-45662
MIL-STD-3009

Identification and Marking of US Military Property. Test Method for Electronic and Electrical Component Parts. Definitions of, and Basic Requirements for Electric and Electronic Equipment Enclosure. General Requirements for Electronic Equipment. Test Methods and Procedures for Micro-Electronics. Dissimilar Metals. Calibration System Requirements.
Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible.

2.3.3 Other Military Specifications

Federal Standards.
QQ-S-571
ZZ-R765

2.4 Order of Precedence

In the event of conflict, the requirements of the following documents shall apply in the priority shown:
MIL-PRF-22885
${ }^{\text {SIIE }}$

NONE

Other referenced specifications, documents and drawings.
Nothing in this document, supersedes applicable laws and regulations unless a specific exemption has been obtained.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sizE }} \mathrm{A}$	$\begin{gathered} \text { CAGE Code } \\ 12522 \end{gathered}$	DwG No	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 9 OF 97	

3.0 THE SERIES 100 PRODUCT LINE

This section provides an overview of the $\$ 100$ product characteristics, features, options, standard and customized product configurations, and accessories.

3.1 Pushbutton and Switch Characteristics

3.1.1 Switch Characteristics

3.1.1.1 Termination types

Double turrets solder.
Printed circuit board (PCB).
Crimp pin.
3.1.1.2 Switch poles configurations

Single Pole Double Throw (SPDT).
Double Pole Double Throw (DPDT).
Four Pole Double Throw (4PDT).
Indicator.
3.1.1.3 Switch contact material

Silver.
Gold.
3.1.1.4 Common bussed configurations

Standard - None.
Single common bussed.
Horizontal common bussed.
Vertical common bussed.
Bottom common bussed.
Top common bussed.

3.1.2 Pushbutton Characteristics

3.1.2.1 Light source
 Incandescent lamps.

High brightness light-emitting diodes (HB LEDs), and HB LEDs with voltage dimming circuit.
3.1.2.2 Common circuitry

Single common.
Horizontal split common.
Vertical split common.
3.1.2.3 Light-emitted diode (LED) polarity

Current sourcing (common cathode).
Current sinking. (common anode).

3.1.2.4 Display Style

3.1.2.5 Display Types

$\begin{aligned} & \text { TYPE } \\ & \text { CODE } \\ & \text { note / } \end{aligned}$	MIL-PRF-22885 Code	DESCRIPTION	LIGHT AND COLOR SOURCES		NonIlluminated	Illuminated
			INCANDESCENT LAMP	$\begin{gathered} \text { HIGH } \\ \text { BRIGHTNESS } \\ \text { LED } \end{gathered}$		
$\begin{gathered} 1 \\ \underline{1 /} \end{gathered}$	C	Visible opaque black legends on translucent color background. When illuminated, the background appears in color while the legends remain opaque black.	Flat Filter	Flat Filter	S100	S100
2	B	Obscure legends on opaque black background. When illuminated, the background appears in color while the legends remain opaque black.	Lamp Cap	---		S100
3	H	Obscure legends on opaque black background. When illuminated, the legends appear in color while the background remains opaque black.	Lamp Cap	---		S100
$\begin{gathered} 4 \\ \underline{2 l} \end{gathered}$	N	Visible trans-reflective white legends on an opaque black background. When illuminated, the legends appear in color while the background remains opaque black.	Lamp Cap	Flat Filter	S100	S100
$\begin{gathered} 5 \\ \underline{2} / \underline{3} / \end{gathered}$	W	Visible opaque black legends on trans-reflective white background. When illuminated, the background appears in color while the legends remain opaque black.	Lamp Cap	Flat Filter	S100	S100
$\begin{gathered} 6 \\ \underline{2} 1 \underline{4} \end{gathered}$	s	Obscure legends on opaque black background. When illuminated, the legends are sunlight readable while the background remains opaque black.	Flat Filter	Flat Filter		S100

SIZE	Cage code	DWG NO		REV
A	12522		SERIES 100 SCD	1.4
$\begin{aligned} & \text { SCALE } \\ & \mathrm{NONE} \end{aligned}$	WT	SHEET	SHEET 11 OF 97	

$\underline{5 /}$	S	Obscure legends on opaque black background. When illuminated, the legends are NVIS compatible while the background remains opaque black.	NVG Filter	NVG Filter	

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.	SIZE DWG NO	CAGE CODE 12522	SERIES 100 SCD	1.4	
SEE SHEET1	DO NOT SCALE DRAWING	SCALE NONE	WT	SHEET	SHEET 12 OF 97

CUSTOMER REPLACEABLE LEGENDS						
TYPE CODE note /	MIL-PRF-22885 Code	DESCRIPTION	LIGHT AND COLOR SOURCES		NonIlluminated	Illuminated
			INCANDESCENT LAMP	HIGH BRIGHTNESS LED		
$\begin{gathered} 8 \\ 1 / \end{gathered}$	B	Similar to a Type 2 display.	Lamp Cap	---		REPLACE WITH LEGEND
$\begin{gathered} 9 \\ 1 / \end{gathered}$	W	Similar to a Type 5 display.	Lamp Cap	---	$\begin{gathered} \text { REPLACE } \\ \text { WITH } \\ \text { LEGEND } \end{gathered}$	$\begin{gathered} \text { REPLACE } \\ \text { WITH } \\ \text { LEGEND } \end{gathered}$
$\begin{gathered} 0 \\ 1 / \end{gathered}$	S	Similar to a Type 6 display, except contrast ratio requirements do not apply.	Flat Filter	Flat Filter		$\begin{aligned} & \text { REPLACE } \\ & \text { WUG } \\ & \text { LEGEDD } \end{aligned}$

Notes:
1/ Type 1 - split display styles, including 2-way, 3-way, and 4-way splits, will have . 026 " black bars as visual split screen separators.
2/ Available in High Brightness with voltage dimming.
3/ Type 6 - Sunlight readable display applies to incandescent configurations. When illuminated, display shall be readily discernible under 10,000 foot-candles of direct light when tested per MIL-PRF-22885. Un-illuminated legends shall not be discernible. Recommended legend height is .100 inch. Incandescent colors Blue and Aviation Green are not recommended for displays required to operate in high-intensity sunlight environments. All LED colors are fully SLR.
4/ Type 7 - Night Vision Imaging System (NVIS) compatible display. When illuminated, legends are compatible with NVIS (Gen III) night vision goggles. Applies to both incandescent and LED configurations. Incandescent versions are also sunlight readable. Non-illuminated legend shall not be discernible. (Available in "sealed" version only).
5/ Pushbuttons with customer replaceable legends are Display Types 8, 9 and 0. Customers may specify legend text in the normal manner when ordering pushbuttons or assemblies of switches and pushbuttons. If no legend is specified by the customer, a temporary film legend with the words "Replace With Legend" will be installed at the factory in order to clarify positive/negative film type and to show the position of the legend plate within the pushbutton stack-up. Legends and faceplate assemblies which are produced in the field may not be of equal quality to those which are factory made.
Type 8 Similar to Type 2.
Type 9 Similar to Type 5.
Type 0 Similar Type 6.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

SIIE	Cage code	DWG NO
A	12522	
SCALE NONE	WT	SHEET

3.1.2.6 Illuminated color

Staco Code	Color Code Non-NVIS			Color Code NVIS	
	MIL-PRF-22885 Code	High-brightness LED Color	Incandescent Color	MIL-PRF-22885 Code	LED / Incan. Color
0	W	White	White	-	Blue
1	R	Red	Red	L	Red
2	G	Green	Green	J	Green B
3	Y	Aviation yellow	Aviation yellow	-	Yellow B
4	D	Not available	Lunar white	-	White
5	-	Lemon yellow	Lemon yellow	K	Yellow A 2/.
6	B	Blue	Blue 1/.	H	Green A
7	Z	Not available	Aviation green 1/	-	

Notes:
1/. May not be suitable for high intensity light applications.
2/. Meets both NVIS Yellow Class-A and Class-B. Type I Class-A is primarily used in Helicopters. Type II Class-B is primarily used in fixed wing aircraft. Please contact factory for additional assistance/ or refer to technical manual of MIL-STD-3009 for further information.
3. Colors of incandescent lamp and High Brightness LED are slightly different.

3.2 Standard 'Coded' Configurations

The following "coded" models are Series 100 standard assemblies:
Model A "coded" - Switch / indicator with pushbutton assembly (Figure 2: Model A exploded view - Drip-proof and PC termination version)
Model C "coded" - Switch / indicator assembly (without pushbutton (Figure 1: Model C - exploded view - Drip-proof and PC termination version shown)

Model 92"coded" - Pushbutton assembly (Figure 3: Model 92 "coded" - Incandescent version shown and Figure 4: Model 92 "coded" - LED version shown)
Bill of Materials of standard "coded" models C and 92 are shown in Table I: switch and Pushbutton BOM.

Figure 1: Model C - exploded view - Drip-proof and PC termination version shown

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

Figure 2: Model A - exploded view - Drip-proof and PC termination version

Figure 3: Model 92 "coded" - Incandescent version shown

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }} \mathrm{A}$	CAGE CODE 12522	${ }^{\text {owg No }}$ SERIES 100 SCD	1.4
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 15 OF 97	

Figure 4: Model 92 "coded" - LED version shown

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sine }} \mathrm{A}$	$\begin{gathered} \text { CAGE Code } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 16 OF 97	

Table I: Switch and Pushbutton BOM

Model 92 "coded" BOM	Model C "coded" BOM	
Pushbutton Assembly	Switch / Indicator Assembly	
Sealed	Solder / PCB terminal	Crimp pin terminal
1 - Pushbutton assembly.	1 - Switch housing assembly.	1 - Switch housing assembly.
1 - Outer seal.	1 - Panel seal.	1 - Panel seal.
	2 - Panel spacers.	2 - Panel spacers.
	1 - Mounting sleeve.	1 - Mounting sleeve.
		1 - Receptacle assembly.

3.3 Customized Configurations

Customized configurations are unique in which they conform to a specific customer and/or defined configurations and/or have unique requirements for performance, marking, or both.

Customized configuration shall be designed and manufactured to meet the general requirements of MIL-PRF-22885 whenever possible. However, specific customer-invoke design requirements may compromise certain performance characteristics and thus prevent total compliance with the details of mentioned specification.
Custom configurations may require additional charges for material and/or engineering development.

3.3.1 Model 92P Pushbutton Assembly

92PXXXX-TAB numbers shall be used when define unique pushbutton assembly with customized artworks or non-standard requirements.
The XXXX in this model number is a four-digit, sequentially assigned number. All of these numbers are tabulated and have a three-digit or, under special circumstances, a four-digit sequential TAB number. (Typical example would be 92P1234-010).

3.3.2 Model 730XXX Pushbutton Switch Assemblies

730XXX-TAB numbers shall be used when define non-standard pushbutton switch assembly. Unique requirements such as:
a. Standard switches in use with model 92P type pushbutton; and/or
b. Non-standard switch in use with model 92 "coded" pushbutton; and/or
c. Switches require non-standard marking or construction; and/or
d. When the customers/sales require that a non-coded part number to be used.

3.4 Matrix Frame Assemblies

The pushbutton switch assemblies are available in matrix frames. The matrix frames are available in the following configurations:
Model C95 - Rear mount flange matrix in solder, PCB, and crimp pin terminations.
Model C97 - Front mount dress bezel matrix in solder, PCB, and crimp pin terminations.
Details on these units are found in the Matrix Frame Assembly Specification Control Drawing, Model 94-97 Coded.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	${ }^{\text {owG No }}$	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	SCALE NONE	wr	SHEET	SHEET 17 OF 97	

Matrix assemblies are designed, tested and qualified in accordance to the requirements of MIL-S-24317.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SLIE }} \mathrm{A}$	$\begin{gathered} \text { CAGE Code } \\ 12522 \end{gathered}$		SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 18 OF 97	

3.5 Accessories

Guards

Switch guards.
Watertight seal switch guards.

Tool

Pushbutton extraction tool.
Matrix switch extraction tool.

Seals

Watertight seals.
Solvent resistant seals.

Crimp pin tool and positioned.
Wire connector insertion \& removal tool.

Socket contact wire termination crimp pin.

Others

Color filter caps.
Dummy lamps.
Insulator plugs.
Dress bezel mounting cleat assemblies.
Digital dimming module. Panel seals.
Please refer to section 5. 1 for more information and part number.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { cage coob } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEEI	SHEET 19 OF 97	

This page intentionally left blank

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }} \mathrm{A}$	$\begin{gathered} \text { cace coos } \\ 12522 \end{gathered}$	owg No	SERIES 100 SCD	${ }^{\text {Rev }}{ }^{\text {a }}$. 4
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Shet	SHEET 20 OF 97	

4.0 GENERAL SPECIFICATIONS

4.1 Enclosure Designs

The following enclosures defined in MIL-PRF-22885 are available in the Series 100 Product line and are shown in Table II: Enclosure Designs.

Typical type II \& V enclosure design are shown in Figure 5: S100 exploded view (solder termination version shown) and Figure 6: 5100 exploded view (PCB termination version shown), respectively. Splash-proof and Watertight details are shown in Figure 8: Splashproof/Watertight details.

Table II: Enclosure Designs

MIL-PRF-22885 code	Seal Description	
2	Drip-proof $\underline{1 /}$	II (solder / PCB terminal) \& V
(Crimp pin terminal)		

1/ In accordance to MIL-STD-108.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sIIE }}$ A	$\begin{gathered} \text { CAGE Code } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {REV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 22 OF 97	

Figure 5: S100 exploded view (solder termination version shown)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { cage coob } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 23 OF 97	

Figure 6: S100 exploded view (PCB termination version shown)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { CAGE CODE } \\ & 12522 \end{aligned}$	ows no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 24 OF 97	

Figure 7: S100 exploded view (Crimp termination version shown)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { CAGE CODE } \\ & 12522 \end{aligned}$	ows no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 25 OF 97	

Figure 8: Splash-proof/Watertight details

4.2 Outline Dimensions

Outline dimensions of the various enclosure designs are shown in: Table III: Outline Dimensions.

Table III: Outline Dimensions

	Enclosure Type	View	Figure
Drip-proof - Solder/PCB	II	Front	Figure 9: Drip-Proof - Solder/PCB and Crimp switches - Enclosure Type II solder and PCB termination and Enclosure Type V crimp termination (front view)
Drip-proof - Solder/PCB	II	Top	Figure 10: Drip-Proof - Solder/PCB switches - Enclosure Type II solder and PCB termination (top view)
Drip-proof - Solder/PCB	II	Side	Figure 11: Drip-Proof - Solder/PCB switches - Enclosure Type II solder and PCB termination (side view)
Drip-proof - Crimp	VI	Front	Figure 9: Drip-Proof - Solder/PCB and Crimp switches - Enclosure Type II solder and PCB termination and Enclosure Type V crimp termination (front view)
Drip-proof - Crimp	V	Top	Figure 12: Drip-proof-proof switches Enclosure Type V crimp pin termination (top view)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

| Use or disclosure of data contained on this sheet is subject to
 restrictions of the title page of this document. | SIZE
 DWG NO | CAGE CODE
 12522 | SERIES 100 SCD | 1.4 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE SHEET1 | DO NOT SCALE DRAWING | SCALE
 NONE | WT | SHEET | SHEET 27 OF 97 |

Seal Description/Option	Enclosure Type	View	Figure
Drip-proof - Crimp	V	Side	Fiqure 13: Drip-proof switches - Enclosure Type \vee crimp pin termination (side view)
Splash-proof/Watertight Solder/PCB	III	Front	Figure 14: Splash-Proof/ Watertight switches - Enclosure Type III solder and PCB terminations and Enclosure Type VI crimp termination (front view)
Splash-proof/Watertight Solder/PCB	III	Top	Figure 15: Splash-Proof/Watertight switches - Enclosure Type III solder and PCB terminations (top view)
Splash-proof/Watertight Solder/PCB	III	Side	Figure 16: Splash-Proof/Watertight switches - Enclosure Type III solder and PCB terminations (side view)
Splash-proof/Watertight Crimp	VI	Front	Figure 14: Splash-Proof/ Watertight switches - Enclosure Type III solder and PCB terminations and Enclosure Type VI crimp termination (front view)
Splash-proof/Watertight Crimp	VI	Top	Figure 17: Splash-Proof/Watertight switches - Enclosure Type VI crimp termination front view)
Splash-proof/Watertight Crimp	VI	Front	Figure 18: Splash-Proof/Watertight switches - Enclosure Type VI crimp termination (top view)

4.2.1 Switch Assembly and Mounting Hardware

4.2.1.1 Switch Assembly

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

${ }^{\text {SIZE }} \mathrm{A}$	Cage code	DWG NO		REV 1.4
	12522		SERIES 100 SCD	
$\begin{aligned} & \text { SCALE } \\ & \mathrm{NONE} \end{aligned}$	WT	SHEET 28 OF 97		

Figure 9: Drip-Proof - Solder/PCB and Crimp switches - Enclosure Type II solder and PCB termination and Enclosure Type \vee crimp termination (front view)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }} \mathrm{A}$	$\begin{gathered} \text { cace coos } \\ 12522 \end{gathered}$	owg No	SERIES 100 SCD	${ }^{\text {Rev }}{ }^{\text {a }}$. 4
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Shet	SHEET 29 OF 97	

Figure 10: Drip-Proof - Solder/PCB switches - Enclosure Type II solder and PCB termination (top view)

Figure 11: Drip-Proof - Solder/PCB switches - Enclosure Type II solder and PCB termination (side view)

Figure 12: Drip-proof-proof switches - Enclosure Type \vee crimp pin termination (top view)

Figure 13: Drip-proof switches - Enclosure Type \vee crimp pin termination (side view)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	CAGE CODE 12522	owg	SERIES 100 SCD	${ }^{\text {Rev }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 31 OF 97	

Figure 14: Splash-Proof/ Watertight switches - Enclosure Type III solder and PCB terminations and Enclosure Type VI crimp termination (front view)

Figure 15: Splash-Proof/Watertight switches - Enclosure Type III solder and PCB terminations (top view)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }} \mathrm{A}$	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$		SERIES 100 SCD	${ }^{\mathrm{REV}} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	$\begin{aligned} & \text { sCAIE } \\ & \text { NONE } \end{aligned}$	wr	Shet	SHEET 32 OF 97	

Figure 16: Splash-Proof/Watertight switches - Enclosure Type III solder and PCB terminations (side view)

Figure 17: Splash-Proof/Watertight switches - Enclosure Type VI crimp termination (front view)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {STEE }}$ A	$\begin{aligned} & \text { Cage coos } \\ & 12522 \end{aligned}$	${ }^{\text {owg no }}$ SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 33 OF 97	

Figure 18: Splash-Proof/Watertight switches - Enclosure Type VI crimp termination (top view)

Figure 19: Solder termination

Figure 20: PC termination

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 34 OF 97	

Figure 21: Crimp termination

Figure 22: Crimp pin

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sILE }}$ A	CAGE CODE 12522	DWG No	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 35 OF 97	

SCREW NUT FOR RECEPTACLE

SOCKET CONTACT CRIMP TYPE.

MIL-C-39029/22-192
PN: 15276. SEE Figure 22: Crimp pin FOR MORE DETAILS.

Figure 23: Crimp Receptacle Detail

4.2.1.2 Mounting Hardware

The panel spacer may be used for extended mount applications. This feature is to enable the pushbutton to align with commonly used edgelighted panels when applicable. Please note, a second panel seal is recommended for drip-proof when use with extended mounted applications and is sold separately.

Figure 24: Hardware (splash-proof and watertight)
Table IV: Mounting hardware dimension

Symbol	Description	Dimension
A	Drip-proof panel seal* *	$0.040^{\prime \prime}[1.02 \mathrm{~mm}]$
Al	Watertight panel seal** $^{\prime \prime}$	$0.024^{\prime \prime}[0.61 \mathrm{~mm}]$
B	Panel spacer	$0.150^{\prime \prime}[3.81 \mathrm{~mm}]$
C	Mounting sleeve 1	$0.150 "[3.81 \mathrm{~mm}]$
D	Mounting sleeve 2	$0.380^{\prime \prime}[9.65 \mathrm{~mm}]$

[^0]
** Free height or uncompressed, watertight panel sea

Figure 25: Hardware (drip-proof, types II and V)

Figure 26: Hardware (splash-proof/watertight, types III and VI)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sIIE }} \mathrm{A}$	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$		SERIES 100 SCD	${ }^{\text {REV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	scalie NONE	wr		SHEET 37 OF 97	

Table \vee : Mounting panel thickness maximum

Description	Flushed Mount		Extended Mount	
Switch type	Drip-Proof (types II and V)	Watertight (types II and VI)	Drip-Proof (types II and V)	Watertight (types II and VI)
Cap protrusion (L1)	$0.24^{\prime \prime}$ $[4.82 \mathrm{~mm}]$	$0.39^{\prime \prime}$ $[9.90 \mathrm{~mm}]$	$0.43^{\prime \prime}$	
$[10.69 \mathrm{~mm}]$	$0.58^{\prime \prime}$			
$[17.78 \mathrm{~mm}]$				
Panel thickness Max. (L2)	$0.85^{\prime \prime}$ $[22.35 \mathrm{~mm}]$	$0.73^{\prime \prime}$ $[19.81 \mathrm{~mm}]$	$0.66^{\prime \prime}$ $[17.78 \mathrm{~mm}]$	$0.54^{\prime \prime}$ $[17.78 \mathrm{~mm}]$

*See Figure 25 and Figure 26 for flushed and extended mounts details.

4.2.2 Pushbutton Assembly

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { CAGE CodE } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	scali NONE	wT	SHEET	SHEET 38 OF 97	

Figure 27: Pushbutton Assembly types (Incandescent/LED)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	owG N	SERIES 100 SCD	1.4
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 39 OF 97	

4.2.3 Panel Cutout Dimensions

4.2.3.1 Pushbutton switch assemblies

SECTION A-A

Figure 28: Panel cutout and thickness

Figure 29: Matrix mount for type II \& VI

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sILE }} \mathrm{A}$	$\begin{gathered} \text { Cage coob } \\ 12522 \end{gathered}$	owg No	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 41 OF 97	

Figure 30: Matrix mount for type III \& VI

4.2.3.2 Slot mounting

For applications where horizontal or vertical slot mounting of two or more individual mount switch/indicator is required, the following formula provides cut-out dimensions for the slot.
L (inches) $=0.752^{\prime \prime} \times(\mathrm{n}-1)+0.690^{\prime \prime}$
$\mathrm{L}(\mathrm{mm})=19.10 \mathrm{~mm} \times(\mathrm{n}-1)+17.53 \mathrm{~mm}$.
Where:
$\mathrm{L}=$ length of horizontal or vertical mounting slot.

A	${ }_{1}^{\text {anctaobe }}$
$\stackrel{\text { sacke }}{\text { some }}$	

$N=$ number of units in a row or column.

Figure 31: Slot mount for type I \& III
4.2.3.3 Pushbutton switch assemblies with guards

Figure 32: Switch guards (P/N 15089 \& 156103) type II, V

Figure 33: Switch guard (P/N 15204) type III, VI

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { Cage coob } \\ 12522 \end{gathered}$		SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 43 OF 97	

Figure 34: Switch guard (P/N 156104) type III, VI

4.3 Display Specifications

4.3.1 Field of View

The pushbutton switch displays are tested in accordance to the requirements of MIL-PRF-22885 (see Table VI: Viewing Area).

Figure 35: Legend Area
Table VI: Viewing Area

Viewing area	Drip-Proof dimensions - Inch (mm)	Watertight dimensions - Inch (mm)
Full screen	$0.52^{\prime \prime} \times 0.52^{\prime \prime}$	$0.52^{\prime \prime} \times 0.52^{\prime \prime}$
$[13.11 \mathrm{~mm} \times 13.11 \mathrm{~mm}]$	$[13.11 \mathrm{~mm} \times 13.11 \mathrm{~mm}]$	
Half screen - horizontal	$0.52^{\prime \prime} \times 0.26^{\prime \prime}$	$0.52^{\prime \prime} \times 0.26^{\prime \prime}$
	$[13.11 \mathrm{~mm} \times 6.60 \mathrm{~mm}]$	$[13.11 \mathrm{~mm} \times 6.60 \mathrm{~mm}]$
Half screen - vertical	$0.26^{\prime \prime} \times 0.52^{\prime \prime}$	$0.26^{\prime \prime} \times 0.52^{\prime \prime}$
	$[6.60 \mathrm{~mm} \times 13.11 \mathrm{~mm}]$	$[6.60 \mathrm{~mm} \times 13.11 \mathrm{~mm}]$
Quarter screen	$0.26^{\prime \prime} \times 0.26^{\prime \prime}$	$0.26^{\prime \prime} \times 0.26^{\prime \prime}$
$[6.60 \mathrm{~mm} \times 6.60 \mathrm{~mm}]$	$[6.60 \mathrm{~mm} \times 6.60 \mathrm{~mm}]$	

4.3.2 Light Sources

There are two different light sources available for S100 product line. The two light sources are high-brightness light-emitted diodes (HB LEDs) and incandescent lamps.
High-brightness light emitted diodes.
The High Brightness LEDs are offered in two configurations. The first configuration is High Brightness LEDs with current regulating resistors, and the second configuration is High Brightness LEDs with voltage dimming circuit (only available on 28 V).

Incandescent lamps

All lamps shall be flange based, incandescent, T-1 sub-miniature type. They shall be field replaceable from the front panel. When lamps are not furnished with the pushbuttons, a removable fiberboard plate shall be installed at the factory. This plate is removed when lamps are installed in the field. For proper operation, four T-1 lamps, or a combination of lamps and 'dummy plugs' (a device which simulate the specified lamps) must be used to prevent damage to the unit.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { Cace coog } \\ & 12522 \end{aligned}$		SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 45 OF 97	

4.3.3 Legends

Standard font style \& size.

The standard font style is 'alternate gothic number 2' (AG2), available in capital letters and numeric, plus all the character and symbols which are available as shown in Figure 36: Standard font size and style.

$$
\begin{aligned}
& \text { ABCDEFGHJJKLMNOPQRSTUVWXYZ } \\
& \text { 0123456789! @\# \$\% ^ \&*()'.," \+/ }
\end{aligned}
$$

Figure 36: Standard font size and style
Note: Lower case characters not available as standard option in this font.
Unless otherwise specified, all symbols will be proportional to the size of the AG2 font.

RECOMMENDED LETTER RATIO
HEIGHT TO WIDTH RATIO: H/W=2
HEIGHT TO STROKE WIDTH: H/b =6

Figure 37: Character height
The character height, as defined in Figure 37: Character height above, shall be the distance (in decimal inches) from the top to the bottom of a capital letter (no descender) in the standard font, AG2. The standard character heights are as follow: 0.072", 0.087", 0.100', 0.125", and 0.145"'.

The approximate number of AG2 characters of a given size which will fit into a display area is given in Table VII: Recommended Line and Character per Display Area. Since AG2 characters are proportionally spaced (i.e., a character "M" or "W" is about three times as wide as the character "l") the actual number of characters will depend on the specific characters used. If the specific characters used in a given area exceed the space available, but by no more than 10%, the characters shall be condensed by 10%, using the same height but less width, in order to accommodate the legend as requested by the customer.

Table VII: Recommended Line and Character per Display Area

Optional font style and size, non-roman alphabets and symbols. By special order, other font styles and sizes may be ordered in their normal, condensed, bold, or expanded variations. These typefaces are available in either or both upper and lower cases. Depending on the character width of the chosen fonts, the number of characters per line may be different than of AG2.
Non-Roman alphabets - Graphic representative is required from customers for nonroman alphabets such as Hebrew, Russian, Japanese, Korean, Chinese, Arabic, Sanskrit, etc.,

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{${ }^{\text {SIZE }} \mathrm{A}$} \& CAGE CODE \& DWG NO \& \& \multirow[t]{2}{*}{ReV

1.4}

\hline \& $$
12522
$$ \& \& SERIES 100 SCD \&

\hline $$
\begin{aligned}
& \text { SCALE } \\
& \mathrm{NONE}
\end{aligned}
$$ \& WT \& \& SHEET 47 OF 97 \&

\hline
\end{tabular}

Standard and complex shapes - It is recommended that the customers to provide graphic representative or drawings for standard and complex shapes such squares, rectangles, circles, icons, or graphic symbols.

4.3.4 Lens and Faceplate Assemblies

The lens and faceplate assemblies are part of the pushbutton assembly. These pushbuttons are removable from the front of the panel to allow the replacement of incandescent lamps without the need for special tools. Multi-chip LEDs are not replaceable. The light source assembly of pushbutton with High Brightness LEDs can be replaced in the field if required.

4.3.4.1 Color Filters

Incandescent lamp-based pushbuttons that have display type 2, 3, 4, 5, 8 or 9 utilize color filter caps which may be interchanged among the fourcolor cell areas or replaced with color caps ordered from the factory. Incandescent lamp-based pushbuttons that have display types 1, 6, 7 or 0 utilize flat color filters which are an integral part of the faceplate assembly and are not replaceable in the field.
On all configurations of multi-chip LED based pushbuttons, the color is derived from the multi-chip LEDs (and, in the case of type 7 displays, the color is derived from the combination of the multi-chip LEDs and the NVGcompatible filter). Multi-chip LED colors are not changeable in the field.
On all configurations of High Brightness LED based pushbuttons, color is derived from color filters, and in the case of type 7 displays, the color is derived from the NVG-compatible filter. High Brightness LED based pushbuttons that have display types 0, 1, 4, 5, 6, or 7 utilize flat color filters which are an integral part of the faceplate assembly and are not replaceable in the field.

4.3.4.2 Customer Replaceable Legends

Display types 8, 9 and 0 allow for customer replaceable legends. Each type is available for configurations with incandescent lamps pushbuttons. Display type 0 is available for High Brightness LED based pushbuttons. For multi-chip LED-lighted pushbuttons display types 9 and 0 are available. The overall size of the replaceable faceplate is .575" (14.61 mm) square, with a viewing area of $.495^{\prime \prime}(12.57 \mathrm{~mm})$ square. Displays with customer installed legends may not be of equal quality to that of factory installed assemblies with laminated legends. Section 6.0, TB-12-A-29 illustrates the stack-up and surface orientation for these display types.
NOTE: Factory supplied replaceable legends are available by indicating the desired text in the normal manner. If no specific legend is identified, a temporary film chip (REPLACE;WITH;LEGEND) will be installed in the pushbutton at the factory.

4.4 Mechanical Specifications

4.4.1 Mechanical Endurance

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sile }}$ A	$\begin{aligned} & \text { Cace coog } \\ & 12522 \end{aligned}$		SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 48 OF 97	

The pushbutton switches are tested in accordance to the requirements of MIL-PRF22885.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sile }}$ A	$\begin{aligned} & \text { Cace coog } \\ & 12522 \end{aligned}$		SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEEI	SHEET 49 OF 97	

Mechanical life

Switches are tested and exceeded MIL-PRF-22885 life cycle requirement. MIL-PRF22885 required 50,000 cycles. Staco $\$ 100$ test consists of 5,000 cycles of operation at $-55^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, 10,000$ cycles at $+85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, and 85,000 cycles at room temperature.
Note: Mechanical life tests have been completed in excess of 1,000,000 cycles.

4.4.2 Operating Characteristics

Below are switch actions available for $\$ 100$ product line. The pushbutton switches are tested in accordance with the requirements of MIL-PRF-22885 (Table VIII: Action Characteristic).

Table VIII: Action Characteristic

MIL-PRF- 22885 Code	Action
A	Momentary
B	Alternate
H	Indicator

Indicator - Functions as lighted display only. No switch contacts required.
Momentary - Switches on applying pressure to the pushbutton. The switch contacts return to their original position when the pushbutton is released.

Alternate - Switches on applying pressure to the pushbutton. Switch contacts remain in latch down position, when released, they return to their original position when the pushbutton is pressed again.
Below are actuation force, pushbutton travel and alternate action displacement as shown in Table IX: Actuation and Pushbutton Travel

Table IX: Actuation and Pushbutton Travel

Actuation force	2 to 5 pounds $(9$ to 22.2 N$)$	
Pushbutton extraction force	2 to 5 pounds $(9$ to 22.2 N$)$	
Pushbutton travel	$0.130 \pm .010$ inch	Pushbutton travel and alternate action displacement are shown in Figure 38: Pushbutton displacement for
Alternate displacement	0.065 inch (latched) Δ	splash-proof switches.

Figure 38: Pushbutton displacement for splash-proof switches

4.4.3 Mounting Provision

Switch / indicator mounting screw location
The location of the mounting screws within the switch housing is shown in figure 31. Mounting instructions for switches are in technical bulletin TB-206.

MOUNTING SCREW -

MOUNTING SCREWS

Figure 39: Mounting Provision (solder termination shown)
Each switch or indicator assembly intended for individual mount application is provided with a set of mounting hardware. This consists of a mounting sleeve, two panel spacers, and a panel seal, which are used in conjunction with the mounting screws and cam nuts, to install the switch / indicator to the panel.

Use or disclosure restrictions of the tit	tained on this sheet is subject to his document.	A	CAGE CODE 12522		SERIES 100 SCD	${ }^{\text {Rev }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr		SHEET 51 O	

4.4.3.1 Mounting torque

The recommended torque to be applied to the mounting screws during installation is 10 ± 2 ounce-inches ($0.071 \pm 0.014 \mathrm{Nm}$). This torque value is applicable to both, the switch panel mounting and to receptacle assembly installation.

4.4.4 Terminal Strength

Solder terminals. Switch is tested in accordance to the requirements of MIL-PRF22885, MIL-STD-202, Method 208. Terminal strength tests are conducted as prescribed by MIL-STD-211, test condition A. See figure 10 for details and outline dimensions.

PCB terminals. Printed circuit board (PCB) terminals shall be gold plated to facilitate hand, wave, or reflow soldering methods. Terminal strength is 3 pounds perpendicular to the long axis and 5 pounds parallel to the long axis. See figure 11 for details and outline dimensions.

Crimp pin terminals. Crimp pin terminals are gold plated per MIL-G-45204. Crimp on wire terminations per MIL-C-39029/22-129 shall withstand a pull force of 5 pounds along the axis of the terminals. See figures 12 and 13 for details and outline dimensions.

4.4.5 Switch and Pushbutton Weight

The typical weight of the switch or indicator, including mounting hardware and the pushbutton, are given in table X: Pushbutton switch weight.

Table X: Pushbutton switch weight

Description	Termination	Ounces (max.)	Grams (max.)
Model C coded Switch	Solder / PC	0.70	20.0
4PDT	Crimp pin	0.92	26.0
Model C coded	Solder / PC	0.60	17.0
Indicator	Crimp pin	0.81	23.0
Model 92 coded	Incandescent	0.14	4.0
	LED	0.11	3.0
Mounting hardware	Panel seal, panel	0.11	3.0

4.5 Electrical Specifications

4.5.1 Switch Schematics

Switch terminal location \& identification
${ }^{\text {SIIE }}$

Figure 40: Switch terminal identification
Notes:

1. Rows A, B, C, D and columns 1, 2, and 3, identify switch contact terminations.
2. Pins $5,6,8$, and 9 , identify backlight circuit terminations.
3. Pin 7 and 4 identify common (ground) terminations.

Table XI: Switch and termination diagram

Indicator		None	None
Single pole double throw		$\begin{aligned} & \mathrm{B} 2 \circ \mathrm{~B}_{\circ}^{\circ} \circ \end{aligned} \circ \mathrm{B} 3$	$\begin{array}{ll} \text { B2 and B3 } & \text { (NC) } \\ \text { B1 and B3 } & \text { (NO) } \end{array}$
Two pole double throw	$\underbrace{\substack{1 \\ 0}}$	$\begin{aligned} & C 2 \ldots a \\ & C 1 \circ \\ & C 1 \\ & B 2 \\ & B 1 \ldots \\ & B 1 \end{aligned}$	C 2 and C 3 (NC) Cl and C3 (NO) $B 2$ and B3 (NC) Bl and B 3 (NO)
4-pole double throw	$\underbrace{6}$		D2 and D3 (NC) D1 and D3 (NO) C2 and C3 (NC) Cl and C3 (NO) $B 2$ and B3 (NC) B1 and B3 (NO) A2 and A3 (NC) Al and A3 (NO)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	CAGE CODE 12522	owg no SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 53 OF 97	

Note: Shown in normal position.
Refer to Figure 40: Switch terminal identification for terminal designations. Shown in normal positions

4.5.2 Switch Common Bus Schematic

To reduce the number of input wires, a common bussed option is available for switch / indicator assembly as shown below.

Table XII: Bussing Circuit Diagram

Bussing circuit diagram - View from rear of switch	
2 or 3-inputs / Full screen display	
	ussed 1/., 2/.
3 or 4-in	y split display
4 or 5-inputs / 3-way split display	
4-inputs / 4-way split display	
No bussed 1/., $2 /$.	

| STE A | CAGE CODE
 12522 | owg No |
| :---: | :---: | :---: | :---: |
| $\substack{\text { SCALE } \\ \text { NONE }}$ | wI | shet |

1/. Applicable to incandescent versions of the Series 100, Note: bussing is completed in the switch, not the pushbutton. When converting to HB-LED where the bussing is completed in the pushbutton there may be a conflict.

2/. Applicable to HB-LED version of the Series 100.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	CAGE CODE 12522	${ }^{\text {owg no }}$	SERIES 100 SCD	1.4
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 55 OF 97	

4.5.3 Pushbutton Schematics

4.5.3.1 Incandescent lamps.

The following schematics depict three different standard common (ground) configurations for incandescent light sources.
a. Common lamp ground for all four lamps - single common.
b. Horizontally split ground plate - Horizon split common.
c. Vertically split ground plate - Vertical split common.

Unlike LED termination wiring, each incandescent lamp is lighted independently from the other three by applying power to the pin designated. The power may be DC or low-voltage AC, as long as it is within the rating of the lamp. Standard lamp selections are listed in Table XIII: Common Circuit diagrams.

Table XIII: Common Circuit diagrams

4.5.3.2 High-brightness lighted-emitted diodes.

The HB LED pushbuttons have three individual LED's per quadrant. Unlike the incandescent versions, power need to be applied to only one pin to control the lighting of a half-screen LED display, if the display style is either full-screen or one which includes half-screen displays.

For common (ground) configuration, it is recommended to the end user that both ground terminals (typically pins 4 and 7) be used as the common return circuit for redundancy.

It's to be noted that for 5 VDC applications, the LEDs are connected in parallel and uses 45 mA per quadrant when illuminated. Thus, a full-screen unit would use 180 mA , a two-way split with one half lighted would use 90 mA , etc.

For 28 VDC operating voltage applications, the LEDs are connected in series. The current requirements depend upon the configuration. When operated at 28 volts DC, either for a full-screen or two-way split configuration, the maximum forward current is 40 mA for each half screen when illuminated (80 mA with both illuminated). Maximum current usage for each configuration is shown in table J.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }} \mathrm{A}$	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 56 OF 97	

The following schematics show the standard LED configuration for different display style and common configuration.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sIIE }} \mathrm{A}$	$\begin{aligned} & \text { CAGE Code } \\ & 12522 \end{aligned}$	DWG	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 57 OF 97	

Table XIV: 5 VDC High Bright LED Circuit Diagram

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { Caqe coob } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Shet	SHEET 58 OF 97	

8	3-WY VERT RIGHT SPLIT		33	43	53	63		33	43	53	63

| Use or disclosure of data contained on this sheet is subject to
 restrictions of the title page of this document. | SIZE
 DWG NO | CAGE CODE
 12522 | SERIES 100 SCD | 1.4 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEE SHEET1 | DO NOT SCALE DRAWING | SCALE
 NONE | WT | SHEET | SHEET 59 OF 97 |

Table XV: 28 VDC High Bright LED Circuit Diagram

CODE	DISPLAY STYLE (FRONT VIEW)	COMMON CIRCUIT DIAGRAM (REAR VIEW)	COMMON CIRCUIT CODE				SPLIT CIRCUIT DIAGRAM (REAR VIEW)	SPLIT CIRCUIT CODE			
			A B [SOURCING] [SINKING]					C [SOURCING]		D[SINKING]	
			SEALED					SEALED			
1	1 2 3 4 3 FULL 1 2 3 4 $H Z$ SPLIT		32	42	52	62		32	42	52	62
3	1 2 (3) (4) VERT SPLIT		32	42	52	62		32	42	52	62
4	1 2 $3-W Y Y ~ H Z ~$ 3		34	44	54	64		34	44	54	64
5	1 2 3 4		36	46	56	66		36	46	56	66
6	3-WY VERT LEFT SPLIT		34	44	54	64		34	44	54	64
7	1 2 3 4 3-WY HZ BOTTOM SPLIT		34	44	54	64		34	44	54	64

A	${ }_{1}^{\text {catc }} \mathbf{1}$	SERES 100 SCD	1.4
$\stackrel{\text { scate }}{\text { NONE }}$		SHEET 60 OF 97	

8	(1) 3-WY VERT (3) RIGHT S		34	44	54	64		34	44	54	64

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }}$ A	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	ows No	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	scalie NONE	wr		SHEET 61 OF 97	

Table XVI: 28 VDC High Bright LED Circuit Diagram (Voltage Dimming)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {size }}$ A	CAGE CODE 12522	${ }^{\text {owg No }}$ SERIES 100 SCD	${ }^{\text {REV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEEI SHEET 62 OF 97	

8		3-WY VERT RIGHT SPLIT	90 50 40			34	44	54	64	90 5 。 40			34	44	54	64

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { cace code } \\ 12522 \end{gathered}$		SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 63 OF 97	

4.5.3.3 LED polarity

LED light sources may be configured for either current sourcing or current sinking. In current sourcing, the LED is energized by applying current to the LED anode (positive) terminals, LED cathode (negative) leads are in common. In current sinking, the LED is energized by applying current to the LED cathode (negative) terminals and the LED anode (positive) leads are in common. Current sourcing and sinking are shown in the following schematics.

Figure 41: Pushbutton LED Polarity
One characteristic of current sourcing is that it can be used to isolate the lamp load from direct power connection if desired. For this, the cathode side of the LED is always grounded through a current-regulating resistor. The driving circuits supply voltage to the anode side of the LEDs to illuminate them.

Current sinking, on the other hand, enables the controlling circuits to switch the cathodes to ground to light the LEDs. This is a simpler control circuit to implement if MOSFET logic is being used. Also, multi-channel output driver ICs with common grounded emitters are readily available.

4.5.4 Switch Contact Rating

The switch contacts shall be made and break the currents as listed in Table XVII: Contact Rating.

Table XVII: Contact Rating			
		Sea level	50,000 feet
Silver contacts 28 VDC	Resistive	7.0 Amperes	5.0 Amperes
	Inductive	4.0 Amperes	2.5 Amperes
	Lamp	2.5 Amperes	2.5 Amperes
Silver contacts $115 \mathrm{VAC}, 60 \mathrm{~Hz}$	Resistive	7.0 Amperes	
	Inductive	7.0 Amperes	
	Lamp	2.0 Amperes	
Gold plated contacts 28 VDC	Resistive	1.0 Amperes	

Inductive 0.5 Amperes

4.5.5 Light-Emitted Diodes Current Performance

Table XVIII: LED Current Performance

Display style	5 V DC	28 V DC
Full screen		
2-way split screen	180 mA	80 mA
3-way split screen		
4-way split screen		

4.5.5.1 Voltage dimming control

Applicable to 28VDC lighting circuits with dimming device only. These control circuits allow to adjust LED backlight luminance with variable voltage, similar to incandescent lamps light source. Visible luminance starts at about 7.6 V where LED current is approximately 0.020 mA and continues to 28 V where current reaches $20 \mathrm{~mA} \pm 2 \mathrm{~mA}$.
4.5.6 Incandescent Lamp Option

Table XIX: Incandescent Lamp Option

Lamp type	Voltage Max	Maximum	Power (W)	Average M.S.C.P.	Life (Hr)	Note
3071	5	240	1.2	0.15	5,000	-
718	5	460	2.3	0.15	40,000	-
3335	28	64	1.8	0.08	10,000	$1 / 2 /$
3042	6	240	1.4	0.13	3,000	$1 /$
1099	12	240	2.9	0.15	16,000	-
3229	14	160	2.2	0.15	16,000	-
6839	28	96	2.7	0.15	16,000	-

Notes:
1/. SLR performance may be degraded with these lamps.
2/. Recommended for low faceplate temperature.
3. Unless otherwise specified, M.S.C.P. values are $\pm 25 \%$.
4. When lamps are not furnished with pushbuttons, a removable fiberboard plate is installed at the factory, to ensure, that the pushbutton returns to full normal position. This plate is removed and discarded when lamps are installed.
5. Caution: Do not install pushbutton without lamps or dummy lamps in all four positions, or a fiberboard plate in place. Otherwise, when power is connected, a short circuit will result.

4.5.7 Other Electrical Specifications

Contact resistance - The switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-202F, Method 307.
Low level circuit - The switches are tested in accordance to the requirements of MIL-PRF-22885 and ML-STD-202, Method 311.

SIIE	CAGE Code	DWG No		Rev
A	12522		SERIES 100 SCD	1.4
$\begin{aligned} & \text { SCALE } \\ & \mathrm{NONE} \end{aligned}$	wT	SHEET	SHEET 65 OF 97	

Electrical endurance - The switches are tested in accordance to the requirements of MIL-PRF-22885.

Overload cycling - The switches are tested in accordance to the requirements of MIL-PRF-22885.

Contact bounce - The switches are tested in accordance to the requirements of MIL-PRF-22885. Simultaneity is under 2 milliseconds.

Dielectric strength - Tests are performed at both sea level and at a reduced barometric pressure simulating 70,000 feet altitude.
Dielectric withstanding voltage at atmospheric pressure - the switches are tested in accordance to the requirements of MIL-PRF-22885, and MIL-STD-202F, Method 301.

Dielectric withstanding voltage at reduced pressure - the switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-202F, Method 105C, Cond. C.

Insulation resistance - The switches are tested in accordance to the requirements of MIL-STD-202F, Method 302, Cond. B.

Short circuit - The switches are tested in accordance to the requirements of MIL-PRF-22885.

4.6 Optical Performance

The pushbuttons illuminated color is tested in accordance to the requirements of MIL-PRF22885.

4.6.1 HB LED and Incandescent Luminance Performance

The pushbutton luminance is tested in accordance to the requirements of MIL-PRF22885.

Luminance measurements for a given legend type may vary depending on the shape of the lamp filament required for its design voltage, the orientation of the filament within the lampbox, and the legend used in the test. QPL tests are conducted with a standard test legend, AG2, the specified lamp box configuration and utilize lamp type 3071 (5 volt, with a Kelvin temperature of $2350^{\circ} \mathrm{K}$). Results with other legends, lampbox configurations or lamps may be different. See tables L and M for the minimum average luminance for LEDs and incandescent light sources.

Table XX: Incandescent Luminance Performance (Non-NVIS)

	Minimum Luminance (footlamberts)			
$\mathbf{2 2 8 8 5}$ Code	\mathbf{C}	\mathbf{N}	\mathbf{W}	\mathbf{S}
S100 Code	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
White	$350 / 175$	$300 / 150$	$350 / 175$	$275 / 225$
Red	$80 / 40$	$50 / 25$	$70 / 35$	$185 / 150$
Green	$60 / 30$	$40 / 20$	$50 / 25$	$185 / 150$
Aviation Yellow	$350 / 175$	$200 / 100$	$350 / 175$	$275 / 225$
Lunar White	$300 / 175$	$250 / 150$	$300 / 175$	$250 / 200$
Blue	$40 / 20$	$25 / 12$	$30 / 12$	$2 /$

${ }^{\text {sizE }}$ A	CAGE CODE 12522	${ }^{\text {owg No }}$	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
NONE	wr	SHEET	SHEET 66 OF 97	

Aviation Green	$60 / 30$	$40 / 20$	$50 / 25$	$250 / 200$

1. EMI/without EMI
2. Not recommended in blue.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	CAGE CODE 12522	owg no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	$\begin{aligned} & \text { sCALE } \\ & \text { NONE } \end{aligned}$	wr	SHEET	SHEET 67 OF 97	

Table XXI: HB-LED Luminance performance (Non-NVIS)

	Minimum Luminance (footlamberts)			
$\mathbf{2 2 8 8 5}$ Code	\mathbf{C}	\mathbf{N}	\mathbf{W}	\mathbf{S}
S100 Code	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
White	240	530	530	740
Red	40	75	75	180
Green	180	170	170	490
Aviation Yellow	185	410	410	630
Lemon Yellow	350	850	850	990
Blue	166	85	85	220

Chromaticity diagram and illuminated color limits chart.
The chromaticity of illuminated colors is tested in accordance to the requirements of MIL-PRF-22885.

X
Figure 42: Incandesent Color - CIE 1931 Chromaticity Diagram

X
Figure 43: High Brightness LED Colors - CIE 1931 Chromaticity Diagram

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sile }} \mathrm{A}$	$\begin{aligned} & \text { Cage coos } \\ & 12522 \end{aligned}$		SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEEI	SHEET 69 OF 97	

Table XXII: Color Limits (Non-NVIS)

Non-NVIS Color	High brightness LED		Incandescent lamp	
	\times	V	x	V
White	0.300	0.270	0.480	0.395
	0.300	0.305	0.480	0.435
	. 0365	0.395	0.540	0.431
	0.365	0.360	0.540	0.391
Red	0.695	0.285	0.665	SL 2/
	0.705	SL $2 /$	0.659	0.335
	0.650	0.330	0.707	0.287
	0.660	SL 2/	0.713	SL 2/
Green	0.300	0.560	0.300	0.560
	0.300	SL 2/	0.300	SL 2/
	0.375	0.560	0.365	0.560
	0.375	SL 2/	0.365	SL 2/
Aviation Yellow	0.545	0.425	0.568	0.425
	. 0560	SL 2/	0.575	SL 2/
	0.590	0.382	0.630	SL 2/
	0.604	SL 2/	0.623	0.370
Lunar White	---	---	0.400	0.375
	---	---	0.400	0.420
	---	---	0.480	0.375
	---	---	0.480	0.420
Lemon Yellow	0.450	0.500	---	---
	0.475	SL 2/	---	---
	0.505	0.445	---	---
	0.530	SL 2/	---	---
Blue	0.140	0.100	0.250	0.330
	0.140	0.190	0.250	0.420
	. 0220	0.100	0.330	0.330
	0.220	0.190	0.330	0.420
Aviation Green	---	---	0.140	0.470
	---	---	0.290	0.470
	---	---	0.030	SL 2/
	---	---	0.185	SL $2 /$

Notes:

1. The colors are expressed as " x " and " y " coordinates on the standard 1931 CIE chromaticity diagram. Illuminated colors, measured as specified herein, shall be within the limits bounded by the coordinates listed for each color (see figures 32 and 33).
2/. The term "SL" indicates where intersections occur with the spectrum locus on the CIE chromaticity diagram.

4.6.1.1 Voltage dimming control Luminance performance.

Staco's LED light source with built-in voltage dimming circuit, adjusting the brightness to the desired level can be accomplished by simply vary the applied voltage between 28 V (where current is reaches $20 \mathrm{~mA} \pm 2 \mathrm{~mA}$) down to 7.6 V (where the current is approximately 0.020 mA).

The output normalized luminance vs. input voltage of a voltage dimming circuit is shown in figure 33.
Note, voltage dimming control is only available in 28 V DC option.
High Brightness LED Voltage Dimming Curve

Figure 44: Voltage Dimming Curve
Following is an example of how dimming voltage control luminance is calculated.

Example:

Using the luminance data of NVIS yellow from table L.
Minimum average luminance $=250 \mathrm{fL}$.
$250 \mathrm{fL} \times 1.5$ (high) $=375 \mathrm{fL}$.
$250 \mathrm{fL} \times .75$ (low) $=188 \mathrm{fL}$.

4.6.2 NVIS Compatibility

NVIS compatibility is tested in accordance to the requirements of MIL-PRF-22885, MIL-STD-3009, and MIL-L-85762 (when applicable).

NVIS-compatible colors are tested in accordance with MIL-STD-3009. Available NVIS colors are Green A, Green B, Yellow, and Red for incandescent. Green A, green B, yellow, white, blue and red are available in high-brightness LEDs light sources.

NVIS Green A and Green B are used for illuminated controls, caution and advisory signals. NVIS Yellow is used for master caution and warning signals. NVIS Red is only applicable to Class B systems and is used as a warning signal. NVIS blue and white are used for advisory and identification.

U'
Figure 45: NVIS Compatible Colors - CIE 1976 Chromaticity Diagram

Table XXIII: Chromaticity Requirements of NVIS Compatible Light Sources

NVIS	1976 UCS CHROMATICITY COORDINATESI LUMINANCE			
COLOR	$\mathbf{\mathbf { u } ^ { \prime }}$	\mathbf{v}^{\prime}	\mathbf{r}	$\mathbf{f L}$
Green A	0.088	0.543	0.037	0.1
Green B	0.131	0.623	0.057	0.1
Yellow	0.274	0.622	0.083	15
Red	0.450	0.550	0.060	15
White	0.190	0.490	0.040	0.1
Blue	0.175	0.167	0.040	0.1

Where:
u^{\prime} and $v^{\prime}=1976$ UCS chromaticity coordinates of the center point of the specified color area.
r = radius of the allowable circular area for the color.
fL = footlamberts
NOTES:

1. All values are per MIL-L-85762, Table VIII, and MIL-STD-3009.

Night Vision Imaging System Classes - Two NVIS classes have been defined, based on the cut-off frequency of the filters used in the goggles. Class A NVIS uses the 625 nanometer (nm) minus blue objective lens filter while Class B uses the 665 nm filter. The lower cut-off of the Class A filters allows for maximum near-IR response to tree bark, grass and other green vegetation, a general requirement for helicopter applications operating below tree-top level. The Class B filter, with the higher cutoff, allows the goggles to be used in conjunction with orange and red warning indicators in the cockpit, and is intended for aircraft which are operating above tree level.

NVIS Radiance - The NVIS radiance (NR) is measured for Class A (NRA) for compatibility with 625 nm applications, and for Class B (NRB) for 665 nm systems. Both are the result of spectral radiance measurements, in 5 nm increments, from 450 to 930 nm . The readings are automatically scaled by the spectroradiometer system to a selected brightness level given in footlamberts.

NVIS spectral radiance measurements for the Series 100 shall be made on a calibrated spectroradiometer. The luminance setting for these measurements shall be $15 \pm 0.5 \mathrm{fL}$ (or full rated drive condition, whichever is less) as determined either by photometer or spectroradiometer measurement. The NVIS radiance value shall then be scaled from the NR value at the measured luminance to the NR at the specified luminance level.
Table XLVI: NVIS Illuminated Color has the summary of the NVIS radiance specification for configurations which are applicable to the Series 100 Product Line.

${ }_{\text {SLIE }}$	CAGE Code	owg no		
A	12522		SERIES 100 SCD	1.4
NONE	wr	SHEET	SHEET 73 OF 97	

Table XLVI: NVIS Illuminated Color

NVIS Illuminated color									
Color	Minimum Luminance (fL)	Chromaticity Coordinates			$\begin{gathered} \text { Contrast - } \\ 0^{\circ} / 45^{\circ} \\ \text { Degrees } \\ @ 10,000 \mathrm{FC} \\ \hline \end{gathered}$		Radiance		
		U'	v'	r	"ON"	"OFF"	Nra	Nrb	Scaled Luminance (fL)
Green A	100/350	0.088	0.543	0.037	0.60	0.10	$1.7 \mathrm{E}-10$	$1.7 \mathrm{E}-10$	0.10
Green B	150/180	0.131	0.623	0.057	0.60	0.10	$1.7 \mathrm{E}-10$	$1.7 \mathrm{E}-10$	0.10
Yellow A	150/250	0.274	0.622	0.083	0.60	0.10	$1.7 \mathrm{E}-10$	-	0.10
Yellow B	150/350	0.274	0.622	0.083	0.60	0.10	-	$1.5 \mathrm{E}-7$	15.0
Red	80/180	0.450	0.550	0.060	0.30	0.10	-	$1.4 \mathrm{E}-7$	15.0
White	-/600	0.190	0.490	0.040	0.30	0.10	-	$2.2 \mathrm{E}-10$	0.10
Blue	-	0.175	0.167	0.040	N/A	0.10	-	1.00 E-08	0.10

1. Incandescent luminance/HB-LED luminance

Performance of NVGC Light Sources

Table XLVII: Type 6 Contrast, compares the performance of incandescent, and High Brightness LED lighted pushbuttons to the values of

A	${ }_{1}^{\text {Cactase }}$
$\stackrel{\text { cacte }}{\text { NOTE }}$	"

Table XLVI: NVIS Illuminated Color.

4.6.3 Sunlight Readability

The Sunlight Readability is tested in accordance to the requirements of MIL-PRF22885. The contrast ratio of each lighted legend character to the background exceeded the 0.6 minimum requirements, and for unlighted legend character to the background, the average contrast ration is $\ll 0.1$.
Sunlight readable displays in the Series 100 Product Line provide a black, nonreflective, dead-front appearance when not lighted and brightly lighted legend characters, in the specified colors, when the displays are energized. This display (type 6) protects the crew station viewer from false indications in direct sunlight at high altitude. The design overcomes two problems associated with high-intensity light directed at the instrument panel. First, when lighted, it enables the viewer to read the legend despite the intense brightness of direct sunlight at 70,000 feet altitude. Secondly, the design prevents this high intensity light from causing the legends to falsely appear to be lighted when they are actually unlighted. The measure of its effectiveness is by means of calculating two sets of contrast ratios based on laboratory measurements conducted under very specific conditions.

Contrast ratio

As specified in MIL-PRF-22885, the contrast ratios CL and Cul, calculate for each character is as follow:

The lighted contrast (ON/BACKGROUND) is defined by CL = $(\mathrm{B} 2-\mathrm{B} 1) / \mathrm{B} 1$
The unlighted contrast (OFF/BACKGROUND) is defined by CUL = (B3-B1)/B1
B1 = Average background luminance
B2 = Average character luminance, legend lighted
B3 = Average character luminance, legend unlighted
SLR performance of sealed switches - SLR performance shall not be degraded for standard Drip-proof, Splash-proof or Watertight seals. SLR requirements do not apply to Solvent Resistant or Hazardous Environment Seals.

Table XLVII: Type 6 Contrast

Type 6 Contrast		
Color	Average Legend On Contrast MIN	Average Legend Off Contrast MAX
Red	0.6	0.1
Green	0.6	0.1
Aviation Yellow	0.6	0.1
Aviation Green	0.6	0.1
Blue	0.6	0.1
Lunar White	0.6	0.1
White	0.6	0.1

4.7 Environmental Specifications

Temperature Characteristics
The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885.

Table XLVIII: Operating Temperature Range

Condition	Temperature
Operating with lamps un-energized	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating with lamps energized	$-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Touch Temperature: When switches are tested as specified below, the maximum difference between the stabilized lens face temperature and the ambient temperature shall not exceed $+10^{\circ} \mathrm{C}$.

Test method: The test method shall be in accordance with ElA448.2 using the recommended panel cutout. The test shall be performed with each of the standard LED voltages at full rated current and at 100 percent duty cycle.

Salt Spray: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, MIL-STD-202F, Method 101D, Cond. A.

Thermal Shock: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, MIL-STD-202, Method 107, Test Condition A.
Vibration: The pushbutton switches are tested in accordance to the requirements of MIL-STD-202, and MIL-PRF-22885, vibration grade 3.

Acceleration: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885.

Shock: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-202, method 213.

High Impact Shock: The pushbutton switch shall meet the requirements of MIL-S-901, Grade A, Class II.

Moisture Resistance: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, MIL-STD-202F, Method 106F.

Splash Proof Seal: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-108, paragraph 4.9.
Drip Proof Seal: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-108, paragraph 4.9.
Watertight seal: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-108, paragraph 4.13.

Solvent Resistance Seal: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-810, method 504, procedure II.
Explosion: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-202, Method 109G.

Sand \& Dust: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-202, Method 110, Cond. B.

EMI/RFI Shielding: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885.

4.8 Material Requirements

Materials and processes specified herein. Detailed part drawings, bills of material, bills of operation, process specifications and other manufacturing documentation are subordinate to this specification. In case of conflict, this document shall prevail. When a definite material is not specified herein, material or process shall be used which will enable the switches to meet the performance requirements of this specification.
Dissimilar Metals: The pushbutton switches are manufactured in accordance to the requirements of MIL-PRF-22885. Refer to Staco Systems Engineering Design Standard on Dissimilar Metals and MIL-STD-889 for guidance.
Corrosion Resistance: All metal components, including current carrying components, shall be of corrosion-resistant material, or shall be suitably protected to resist corrosion.

Flame Retardant: Insulation materials used in the pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, which meet flammability requirements of 94V-0 in accordance with UL 94.

Non-Toxic: All components contained in S 100 product lines are classified as non-toxic materials.

Front Panel Exposure: Parts designed to be exposed at the front of the panel after assembly shall have a black lusterless finish. These include pushbutton housings, panel spacers, pushbutton guards, and other associated mounting hardware designed to be exposed at the front of the panel after assembly.
Finish: Black anodize over aluminum alloy per MIL-A-8625, Type II, Class 2. Chemical film finishes per MIL-DTL-5541F, Type II, Class 3.
Terminal Plating: Gold plating per MIL-G-45204. PCB terminals for are plated to facilitate hand, wave or flow soldering methods. Crimp pin terminals s per MIL-G-45204.
Silicon Rubber: Silicone rubber per ZZ-R-765.
Fungus: The pushbutton switches are tested in accordance to the requirements of MIL-STD-454, Requirement 4.

Fluorosilicone: Fluorosilicone Rubber and Elastomer, Oil and Fuel Resistant per MIL-R-25988.
Tin Plated Finish: Lead content is 3% minimum.
Ozone Depleting Chemicals and Cadmium plated finishes: Neither Cadmium plating nor ozone depleting chemicals (ODC's) are used in any products or manufacturing processes for this product line. ODC's include chlorofluorocarbons (CFC's), hydrochlorofluorocarbons (HCFC's), methyl chloroform, carbon tetrachloride and halons.

4.9 Other Requirements

4.9.1 Marking

Pushbutton and Switch are marked in accordance to MIL-STD-22885 and MIL-STD130.

Identification of terminal: Lamp and switch terminal numbers shall be identified on header base and receptacle assembly.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { CACE CodE } \\ 12522 \end{gathered}$	DWG	SERIES 100 SCD	${ }^{\text {REV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 77 OF 97	

Identification of product: Switches and/or individual packaging shall be permanently and legibly marked per MIL-STDᄀ-130, spec 73112. For non-MIL specification parts, the following shall be provided as a baseline:
a. Stacosystems.
b. Irvine, CA.
c. Cage code (12522).
d. Switch part number (Cxxxxx).
e. Date code (YYWW).
f. Switch schematic.
g. Pushbutton schematic.
h. Assembly part number (or customer P/N).

For MIL specification parts, the following shall be provided as a baseline:
a. Stacosystems.
b. Irvine, CA.
c. Cage code (12522).
d. Date code (YYWW).
e. Switch schematic.
f. Pushbutton schematic.
g. MIL SPEC Part number.

Refer to Staco drawing 73112 for additional information and custom marking specs.
Switch / indicator housings: Unless otherwise specified, switch and indicator housings shall be marked as specified above with the switch or indicator part number marked on the housing.
Pushbuttons: Unless otherwise specified, pushbuttons shall be marked as follows:
a. Incandescent configuration - date code (and slash number if applicable, and/or TAB number if specified).
b. LED configurations - date code and rated voltage (and slash number if applicable, and/or TAB number if specified).
c. All pushbuttons shall have the word TOP marked on the same side as the index post as an orientation aid when installing the pushbutton into the switch.
d. High Brightness LED lighted pushbutton is identified by "H.B.".
e. High Brightness LED lighted pushbuttons with dimming features are marked as H.B.D.

Permanency of marking: Pushbutton Switches are marked in accordance to MIL-STD-22885 and MIL-STD-202, method 215.

4.9.2 User Instructions and Quality

Each over pack containing switches or indicators shall contain a copy of Panel Mounting Instructions (Staco Systems document 88101, sheet 4 only). Each over pack containing Pushbutton Types 8, 9 or 0 (pushbuttons with user replaceable legends) shall contain a copy of the text and figures from the Legend Replacement Procedure, Staco Systems document 88105.
WORKMANSHIP

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	CAGE CODE 12522	${ }^{\text {ows }}$	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Sheit	SHEET 78 OF 97	

Products shall be manufactured in such a manner as to be uniform in quality and free from cracked or displaced parts, sharp edges, burrs, and other defects which would be detrimental to their serviceability or performance.

QUALITY

Material and products shall be controlled and inspected per the requirements of MIL-I-45208. The maintenance of the calibration system to control the accuracy of the measuring and test equipment shall be in accordance with MIL-STD-45662. Inspection of product for delivery shall consist of Group A inspections per MIL-PRF22885 and the applicable slash sheet.

CHANGES IN SPECIFICATIONS

Specifications defined herein are accurate at the time of release and publication of this revision of this document. Staco Systems reserves the right to make changes without prior notice.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { CAGE CDOE } \\ & 12522 \end{aligned}$	owg no	SERIES 100 SCD	${ }^{\mathrm{REV}} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 79 OF 97	

This page intentionally left blank

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	DWG NO	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	scalt NONE	wr	SHEET	SHEET 80 OF 97	

5.0 ORDER INFORMATION.

This section contains the information necessary to order the standard Series 100 pushbutton switch configurations and its features described in this specification.
PART NUMBER MODEL

Figure 49: Part Number Model
WATERTIGHT OR SOLVENT RESISTANT SEAL: When ordering a model A 'coded' or model C 'coded' with watertight or solvent resistant seal, it's required to the add /005 (for watertight seal), or /006 (for solvent resistant), at the end of the final assembly part number.
Example: A24210-A244152255/005 (for model A 'coded') or C24210/005 (for Model C 'coded')

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {size }} \mathrm{A}$	$\begin{aligned} & \text { CAGE CODE } \\ & 12522 \end{aligned}$	DWG NO	SERIES 100 SCD	$\begin{array}{r} \text { REV } \\ \hline \end{array}$
SEE SHEET 1	DO NOT SCALE DRAWING	sCALE NONE	wT	SHEET	SHEET 82 OF 97	

Table L: Switches/Indicator Configuration Table

NOTES:
1/. A - Switch and pushbutton Assembly.
2/. C-Switch//Indicator (without pushbutton)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }} \mathrm{A}$	$\begin{aligned} & \text { CAGE CODE } \\ & 12522 \end{aligned}$	DWG No	SERIES 100 SCD	$\begin{array}{r} \text { REV } \\ \\ \hline \end{array}$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wT	SHEET	SHEET 83 OF 97	

Table XXIV: Incandescent Pushbutton Configuration Table

LAMP GROUND AND EMI OPTION	DISPLAY STYLE	CHARACTER DEFINITION	LAMP SELECTION \& SEAL	DISPLAY TYPE						COLOR		
X	X	X	XX	X						xxxx		
1 -Single Common, Non- EMI	1 - Full	0 - NONE	00 - Fiberboard, seal	CODE	FILTER	NON-ILLUMINATED		ILUMINATED		CODE	STD	NVIS
2 - Vert split, Non- EMI	2-2-Way horiz split	1-0.072 inch	01-3071 (5VDC), seal			LEGEND	BACKGROUND	LEGEND	BACKGROUND			
3 - Horiz split, Non- EMI	3-2-Way vert split	2-0.087 inch	02-718 (5VDC), seal	1	STD	Black	Translucent color	Black	Color	0	White	---
4 - Single common, EMI/RFI	4-3-Way horiz top	3-0.100 inch	04-3335 (28VDC), seal	2	STD	Hidden black	Black	Black	Visible in color	1	Red	Red
5 - Vert split, EMI/RFI	5-4-Way	4-0.125 inch	05-3042 (6VDC), seal	3	STD	Hidden	Black	Visible in color	Black	2	Green	$\begin{gathered} \text { Green } \\ \text { B } \\ \hline \end{gathered}$
6 - Horiz split, EMI/RFI	6-3-Way vert left	5-0.145 inch	06-1099 (12VDC), seal	4	STD	Translucent white	Black	Visible in color	Black	3	Aviation yellow	$\begin{gathered} \text { Yellow } \\ B \\ \hline \end{gathered}$
	7-3-Way horiz bottom		07-3229 (14VDC), seal	5	STD	Black	Translucent white	Black	Color	4	Lunar white	---
	8 -3-Way vert right		08-6839 (28VDC), seal	6	STD	Hidden	Black	Visible in color	Black	5	Lemon yellow	Yellow A
			09 - Dummy plug, seal	7	NVIS	Hidden	Black	Visible in color	Black	6	Blue	Green A
			10 - Fiberboard, seal	8	STD	Hidden black	Black	Black	Visible in color	7	Aviation green	
			11-3071 (5VDC), seal	9	STD	Black	Translucent white	Black	Color			
			12-718 (5VDC), seal	0	STD	Hidden	Black	Visible in color	Black			
			14-3335 (28VDC), seal									
			15-3042 (6VDC), seal									
			16-1099 (12VDC), seal									
			17-3229 (14VDC), seal									
			18-6839 (28VDC), seal									
			19 - Dummy plug, seal									

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

${ }^{\text {size }} \mathrm{A}$	CAGE CODE 12522	DwG No	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
$\stackrel{\text { scale }}{\text { NONE }}$	wr	SHEET 84 OF 97		

Table XXV: High Brightness LED Pushbutton Configuration Table

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

${ }^{\text {SIIE }} \mathrm{A}$	CAGE CODE 12522	ows no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
NONE	wr	SHEEI	SHEET 85 OF 97	

5.1 Accessories and Part Number

Accessories which apply to pushbutton switch assembly products are identified by 15XXXTAB numbers. Following is the list of all standard accessory products and their part numbers.

5.1.1 Panel Seals (15097)

Series 100 switch/indicators may be ordered as sealed units with the panel seal installed on the switch/indicator housing. (Refer to Figure 5: S100 exploded view (solder termination version shown), Figure 6: 5100 exploded view (PCB termination version shown) or Figure 7: S 100 exploded view (Crimp termination version shown) The panel seal also may be ordered separately, packaged as 10 in a plastic envelope, for replacement parts or for field upgrade of the switch/indicator. To order panel seals specify Part Number 15097.

NOTE: In order to attain drip-proof sealing for the unit, a pushbutton seal is required in addition to the panel seal. This must be factory installed and a fine coating of a special lubricant applied to the throat of the switch housing.

Figure 51: Panel Seal
5.1.2 Solvent Resistant Seals (/006)

Applicable installations requiring resistance to most petroleum-based fuels, solvents, oils and greases (as well as being splash-proof and watertight) the /006 version of the basic Watertight seal may be specified. The same restrictions apply, and the same numbering system is used, except the /005 is replaced with a /006. Available in Display Types 1 through 7 . Type 6 is dead-front, but SLR contrast ratios do not apply.

5.1.3 Pushbutton Guard, General Purpose (15089)

Transparent cover must be lifted to allow actuation of the switch. It prevents any accidental operation of the switch. Spring loaded pushbutton guard cover remains closed until manually lifted; returns to closed position when released. Guard simply slips over the switch housing assembly at time of installation. (Refer to Figure 32: Switch guards (P/N 15089 \& 156103) type II, V for dimensions.) Minimum center to center spacing is .871 " (22.1 mm). To order, specify Part Number 15089.
SIZE

Other variations include 15089-1 which has a red translucent cover, and the 15250TAB which may be secured with a safety wire through .060" holes at bottom of corner guard.

15089-1
.272 in
6.91 mm]

15089-2

Figure 52: Standard Pushbutton Guard for Drip-proof Sealed Assemblies

5.1.4 Pushbutton Guard, Watertight Seal (15204/TAB)

This pushbutton guard is used with watertight/splash-proof seal applications. Transparent cover is lifted to allow access to pushbutton for switch actuation; will stay in open position until manually returned to its closed position. (Refer to Figure 53: Pushbutton Guard for Watertight Sealed Assembly for dimensions.) Center to center spacing for adjacent covers is 1.40 " (35.6 mm).

To order specify Part Number 15204/005 for use with basic Watertight Seals. Applications requiring Solvent Resistant Seals should order Part Number 15204/006.

Figure 53: Pushbutton Guard for Watertight Sealed Assembly

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { cace code } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	${ }^{\text {wr}}$	SHEET	SHEET 88 OF 97	

5.1.5 Color Filter Caps (15194-TAB)

The following is intended for use in Series 100 Pushbuttons with incandescent T-1 Flange Based Lamps. These color filter caps allow changing of pushbutton cell area colors without the use of tools. It applies to legend types 2, 3, 4, 5, 8 and 9 . (Refer to Figure 54: Color Filter Caps for size and shape.) These color filter caps are available in kits containing 25 pieces of a given color. To order, use part number code as follows:

Table XXVI: Color Filter Caps

PART NUMBER	COLOR
$15194-0$	Clear (Transparent) White
$15194-1$	Red
$15194-2$	Green
$15194-3$	Aviation Yellow
$15194-4$	Lunar White
$15194-5$	Lemon Yellow
$15194-6$	Blue
$15194-7$	Aviation Green

P/N: 15194-TAB
Figure 54: Color Filter Caps
5.1.6 Pushbutton Retainer Tie (15093)

When a Series 100 switch and pushbutton assemblies are ordered as "retained" configurations, these parts are included in the assembly. (Refer to Figures 2 and 3. As a separate part, it is shown in Figure 55: Pushbutton Retainer Tie.) Their purpose is to secure the pushbutton to the switch during re-lamping to avoid possible mixups. Replacement of retainer ties for incandescent-based pushbuttons may be accomplished in the field. However, field replacement of retainer ties in LED-based

pushbuttons is not recommended. Additional parts may be ordered by specifying Part Number 15093.

P/N: 15093

Figure 55: Pushbutton Retainer Tie
5.1.7 Dummy Lamp (15091)

The dummy lamp is designed as a substitute for the T-1 flange based incandescent lamp. When less than four lamps are used, the dummy lamp is required to prevent a short circuit condition and to maintain a uniform actuation force. (Refer to Figure 56: Dummy Lamp) To order, specify Part Number 15091.

Figure 56: Dummy Lamp
5.1.8 Pushbutton Extraction Tool (15193)

Facilitates the removal of display pushbuttons, particularly when installed in multistation matrix assemblies. (Refer to Figure 57: Pushbutton Extraction Tool) To order, specify Part Number 15193.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sIIE }}$ A	$\begin{gathered} \text { CAGE Code } \\ 12522 \end{gathered}$	owg no	SERIES 100 SCD	${ }^{\text {REV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 90 OF 97	

Figure 57: Pushbutton Extraction Tool
5.1.9 Crimp Pin Wire Termination Receptacles - Individual Mount (15197 and 15273)

The Series 100 Switch/Indicator with Display Pushbutton are supplied with crimp pin wire termination receptacles installed. (Refer to Figure 21: Crimp termination). Additional receptacles may be ordered separately as replacement parts or for use with Model 98 coded /010 switches without receptacles included.
5.1.10 Socket Contact Wire Termination Crimp Pin (15276)

Addition crimp pin wire termination can be ordered separately as replacement parts for use with crimp pin termination (Refer to Figure 22: Crimp pin). Crimp pins are ordered separately, in the quantity desired.
5.1.11 Crimp Pin Tools and Positioners (15278 and 15279)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	owg	SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wT	SHEET	SHEET 91 OF 97	

Part Number 15278 (Crimping Tool) and 15279 (Positioner) are to be used with MIL-C-39029/22-192 socket contact wire termination crimp pins, see Figure 22: Crimp pin. The following Table LVIII: Crimp Pin and Positioner P/N's shows Staco Systems part number and the corresponding military standard part number.

Table LVIII: Crimp Pin and Positioner P/N's

Part Number	Standard Military Part Number
15278	M22520/7-01
15279	M22520/7-12

Crimping Tool and Turret are used for attaching socket contact crimp to \#20-24 wires for all crimp pins switches / indicators. (Refer Figure 59: Crimping Pin Tools and Positioner) Each part number must be ordered separately.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {size }}$ A	$\begin{aligned} & \text { Caces coos } \\ & 12522 \end{aligned}$		SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 92 OF 97	

Figure 59: Crimping Pin Tools and Positioner

5.1.12 Wire Connector Insertion and Removal Tool (15190)

Standard M81969/16-01 Insertion and Removal Tool used for inserting or removing of wire connectors with crimp pins receptacle, MIL-C-39029/22-192 pins. See Figure 56: Wire Connector Insertion and Removal Tool.

Figure 56: Wire Connector Insertion and Removal Tool
5.1.13 Insulator Plug (15177)

Unused terminal openings in termination receptacles of Models 98 and 99 individual mount switches or Model 95 and 97 Matrix Housing can be closed off by inserting standard MS27488- A20 plastic insulator plugs. (Refer Figure 60: Insulator Plug) The insulator plugs can be used with MIL-C-39029/16-168 and MIL-C-39029/22-192 receptacles. To order, specify Part Number 15177.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

Figure 60: Insulator Plug

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sine }} \mathrm{A}$	CAGE CODE 12522	owg No	SERIES 100 SCD	${ }^{\text {ReV }}{ }^{\text {a }}$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 94 OF 97	

5.1.14 Dress Bezel Mounting Cleat Assembly (15098)

The mounting cleat assemblies, required for installing Models 96 or 97 Series 90 Matrix Housings, are supplied as standard parts with the front mounting dress bezel housing. The quantity will depend on the size of the housing. (Refer to the Matrix Frame Assembly SCD, Series 94 through 97 Coded.) Additional cleat assemblies may be ordered, if desired, for applications of severe vibration or shock. They are packaged 5 to a plastic envelope. To order, specify Part Number 15098.
5.1.15 Light Source Assemblies (15290-TAB thru 15331-TAB)

The following is intended for use in Series 100 Pushbuttons with High Brightness LED. These light source assemblies allow the user to replace the pushbutton light source assemblies without the use of tools. Refer to the following figure for size and shape.

Figure 61: Light Source Assemblies
To order, use the following part number
Table XXVII: 5 Volt Light Source Assembly Part Numbers

Display Style	Part Number				
	Common Circuit		Split Circuit		
Code	Description	Sourcing	Sinking	Sourcing	Sinking
1	Full Screen Horizontal Split Screen	$15306-001$	$15307-001$	$15306-002$	$15307-002$
3	Vertical Split Screen	$15308-001$	$15309-001$	$15308-002$	$15309-002$
4	3 Way Split Screen (Horizontal Top Half)	$15310-001$	$15311-001$	$15310-002$	$15311-002$
5	4 Way Split Screen	$15304-001$	$15305-001$	$15304-002$	$15305-002$
6	3 Way Split Screen (Vertical Left Half)	$15314-001$	$15315-001$	$15314-002$	$15315-002$
7	3 Way Split Screen (Horizontal Bottom Half)	$15312-001$	$15313-001$	$15312-002$	$15313-002$
8	3 Way Split Screen (Vertical Right Half)	$15316-001$	$15317-001$	$15316-002$	$15317-002$

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{gathered} \text { CAGE EDOE } \\ 12522 \end{gathered}$		SERIES 100 SCD	${ }^{\text {ReV }} 1.4$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SheIt	SHEET 95 OF 97	

Table XXVIII: 28 Volt Light Source Assembly Part Numbers

Display Style	Part Number				
	Common Circuit		Split Circuit		
Code	Description	Sourcing	Sinking	Sourcing	Sinking
1	Full Screen Horizontal Split Screen	$15292-001$	$15293-001$	$15292-002$	$15293-002$
3	Vertical Split Screen	$15294-001$	$15295-001$	$15294-002$	$15295-002$
4	3 Way Split Screen (Horizontal Top Half)	$15296-001$	$15297-001$	$15296-002$	$15297-002$
5	4 Way Split Screen	$15290-001$	$15291-001$	$15290-002$	$15291-002$
6	3 Way Split Screen (Vertical Left Half)	$15300-001$	$15301-001$	$15300-002$	$15301-002$
7	3 Way Split Screen (Horizontal Bottom Half)	$15298-001$	$15299-001$	$15298-002$	$15299-002$
8	3 Way Split Screen (Vertical Right Half)	$15302-001$	$15303-001$	$15302-002$	$15303-002$

Table XXIX: 28 Volt with Voltage Dimming Light Source Assembly Part Numbers

Display Style	Part Number				
	Common Circuit		Split Circuit		
Code	Description	Sourcing	Sinking	Sourcing	Sinking
1	Full Screen Horizontal Split Screen	$15320-001$	$15321-001$	$15320-002$	$15321-002$
3	Vertical Split Screen	$15322-001$	$15323-001$	$15322-002$	$15323-002$
4	3 Way Split Screen (Horizontal Top Half)	$15324-001$	$15325-001$	$15324-002$	$15325-002$
5	4 Way Split Screen	$15318-001$	$15319-001$	$15318-002$	$15319-002$
6	3 Way Split Screen (Vertical Left Half)	$15328-001$	$15329-001$	$15328-002$	$15329-002$
7	3 Way Split Screen (Horizontal Bottom Half)	$15326-001$	$15327-001$	$15326-002$	$15327-002$
8	3 Way Split Screen (Vertical Right Half)	$15330-001$	$15331-001$	$15330-002$	$15331-002$

SIZE	CAGE Code	DWG N		REV
A	12522		SERIES 100 SCD	1.4
$\begin{aligned} & \text { SCALE } \\ & \mathrm{NONE} \end{aligned}$	WT	SHEET	SHEET 96 OF 97	

6.0 TECHNICAL BULLETINS.

Technical Bulletin Number	Description
TB-206	Pushbutton switch assembly - mounting procedure
TB-207	Receptacle assembly installation procedure
TB-208	Crimp pin contact terminated wiring system installation procedure
TB-209	Wire crimping procedure
TB-210	Crimp contact installation \& removal procedures
TB-211	Cleaning instructions
TB 167	Pushbutton and Incandescent lamp removal procedure.
TB 12 A 29A	Legend replacement procedure

[^0]: * Free height or uncompressed, splash-proof panel seal

